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We present an experimental study of high-aspect-ratio Faraday waves. We have 
measured the dispersion relation and the damping rate, together with the critical 
amplitude for the primary instability for a wide range of frequencies. We find that our 
results are well explained by the linear theory, if damping from the moving contact line 
is considered in addition to the bulk damping. Just above the primary instability a 
seemingly disordered stationary state is observed. We argue that this state is a 
superposition of normal modes. Approximately 5 YO above the primary instability this 
state breaks down in favour of a quasi-crystalline state. This result is discussed, partly 
in the light of the recent third-order nonlinear theory. 

1. Introduction 
The Faraday experiment, i.e. the generation of surface waves on a fluid subjected to 

purely vertical vibrations, has a long and interesting history. Much of the current 
interest in the Faraday experiment is due to its possibilities as a system with many 
degrees of freedom and especially as a pattern forming system. For this purpose the 
Faraday experiment has two main advantages : the aspect ratio (container size/ 
wavelength) can be varied simply by varying the frequency, and the dynamics can be 
investigated visually. A surprising result for high aspect ratios is the observation that 
the relief of the surface may take the form of ordered patterns closely resembling two- 
dimensional crystals. However, the real surprise is that these patterns are not limited 
to cells of a particular geometry. For high aspect ratios the boundaries become less 
important and the geometry is that of the infinite plane. This had been noticed by 
Faraday (see Martin 1932). Further detailed studies were carried out by Lord Rayleigh 
(1883) who observed the formation of a square surface pattern. A century later the 
square pattern was reported and studied for a circular geometry by Ezerskii, Korotin 
& Rabinovich (1 985) and Ezerskii et al. (1986). In the same year Aleksandrov et al. 
(1986) found a hexagonal pattern for amplitudes of the drive below those for which 
they observed the square pattern. A similar pattern had already been reported by 
Faraday (1831, $93). Pattern selection for intermediate aspect ratios has been 
investigated by Douady & Fauve (1988) and Douady, Fauve & Thual(l989). Recently, 
observations of quasi-crystalline patterns have attracted much attention (Christiansen, 
Alstrsm & Levinsen 1992; Edwards & Fauve 1993). These patterns are macroscopic 
continuous analogues of molecular quasi-crystals : they possess long-range order and 
have a forbidden rotational symmetry. 

The theoretical basis of the pattern formation is not yet fully understood, although 
t Present address: Danish Meteorological Institute, DK-2100 Copenhagen 0, Denmark. 
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FIGURE 1 .  The experiment ‘TI and the comoving z = h  reference system. 

a few attempts have been made (Ezerskii et al. 1986; Levin & Trubnikov 1986; Milner 
1991). However, damping rates seem to play a crucial role in the selection of the surface 
pattern. Experimental work in this direction has almost exclusively dealt with the 
bounded system (Henderson 1990, 1991), and only sporadic data exist for the extended 
system (see the discussion in Milner 1991). In this paper we present a study of the 
dispersion relation, the damping rates and the primary threshold for high aspect ratios 
in a circular system. 

The rest of the paper is organized as follows. In $2 we present the theory. In $ 3  the 
experimental set-up is described and the results for the dispersion relation, the damping 
rate, and the primary threshold are presented. The normal modes and the transition to 
the quasi-crystalline state is discussed in $4. We close the paper in $ 5  with a conclusion. 

2. Theory 
2.1. The ideal fluid 

The experimental situation is easily described in words: a cell filled with a fluid to a 
depth h is oscillated vertically with amplitude .f and frequency 2w. To give a 
mathematical description it is convenient to choose a reference system at rest relative 
to the cell. The origin of the vertical z-axis is chosen so that the unperturbed surface 
is given by z = 0 and the positive direction is downward. The situation is sketched in 
figure 1. 

As noted by Faraday and later confirmed by Lord Rayleigh the frequency of the 
excited surface waves is half of the forcing frequency. The subharmonic nature of the 
instability was theoretically verified directly from the hydrodynamics by Benjamin & 
Ursell (1954). For later use we outline the linear theory following Meron & Procaccia 
(1986). 

If the viscosity is ignored the hydrodynamical equations can be written in terms of 
the velocity potential 4 and the surface deviation 5. For an incompressible fluid the 
Laplace equation is fulfilled in the bulk, 

Furthermore the fluid satisfies two equations on the surface z = 5. The first is the 
Bernoulli theorem (an integral of the Navier-Stokes equation) 

v2$4 = 0. (1) 

afj/at + i(Vq5)2 = - p / p  + [g-fcos ( 2 4 1  z, (2) 

where (3) 

p is the density, g is the gravitation constant, f= 4w2f is the amplitude of the 
acceleration, and a is the surface-tension coefficient. The second equation is the 
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kinematic surface condition, expressing that no fluid enters or leaves the surface (Lamb 
1963), 

These equations must be completed with a set of appropriate boundary conditions on 
the walls and the bottom. The validity of the potential flow approximation will be 
discussed later. 

Linearizing the above set of equations for a lateral unbounded system of finite depth 
h, and seeking solutions in the form of plane waves, 

and 
5 = a(t)exp(ik.x), 

$ = b(t) exp (ik - x) F(z),  
the system reduces to Mathieu’s equation 

u = - w2[p - 2q cos (2041 a. (7) 
The constants are given by 

and the dispersion relation is 
p = w i / w 2 ,  q = kftanh kh/(2w2),  

w l  = gk( 1 + A: k2) tanh kk. (9) 
Here k is the magnitude of the wave vector k. The material constant A, = (a/gp)”‘ is 
called the capillary length. 

In order to consider the stability of the flat surface one has to study the asymptotic 
solution of the damped Mathieu’s equation. Fortunately the stability criterion for 
Mathieu’s equation is well known. For a comprehensive treatment see e.g. Jordan & 
Smith (1977). It turns out that two series of resonances exist with frequency wk equal 
to 2w and w ,  respectively. The dominant resonances are subharmonic, with V-shaped 
borders given by p = 1 q. In (w,f)-space the subharmonic tongues are parabolic with 
minimum f= 0 for w = wk. The tongues of the other resonances are more narrow. 
Thus, for the unbounded system, where there is no constraint on wkr the flat surface 
becomes unstable when fexceeds the threshold f, = 0. 

The case considered above is that of a lateral unbounded system, where the normal 
modes can be chosen as plane waves. Under this assumption the wavenumber k and 
therefore the frequency wk and p (for a given w )  can be chosen from the continuum. If 
the system is bounded the wavenumber is limited to a discrete set of values and for a 
given w the minimum for q may not be realized. In this case the instability curve 
consists of pieces of the V-shaped tongues. If the aspect ratio of the system is increased 
the distance between the tongues will decrease and for high aspect ratios the instability 
threshold f, = 0 is recovered. 

For a circular geometry the normal modes are J ( k l m  r )  cos (lo), where J are the Bessel 
functions of order 1. The wavenumbers are determined by the boundary condition, i.e. 
k , ,  is the mth zero of (dJ/dr) (k , ,  R ) ,  where R is the radius of the cell. The physical 
meanings of 1 and m are the number of angular maxima and the number of nodal 
circles, respectively. 

2.2. Including damping 
Up to now the effect of damping has not been considered in the discussion. The 
amplitude a of free surface waves decays as a result of viscous damping, a - exp( - yt). 
where the damping constant y is defined in terms of the dissipation of mechanical 
energy, Emech/E,nech = -2y. In addition to the viscous damping in the bulk (Landau 

(10) 
& Lifshitz 1987) 

Ybulk  = 2Vk2* 
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where v is the kinematic viscosity, several other mechanisms contribute to the damping 
constant y. These contributions originate from the thin boundary layers near the fixed 
walls, the moving contact line, and the free surface if contaminated. We now briefly 
consider these effects in turn. 

On the fixed boundaries the no-slip condition must apply for the viscous fluid. This 
means that the velocity components parallel to the boundary must change from the 
finite value given by the inviscid theory to zero over the short distance of order 6 = 
(1)/20~)~”. This gives rise to big velocity gradients of order 6-’ as the normal component 
of the velocity is zero in the boundary layer (Landau & Lifshitz 1987). As the volume 
of the boundary layer is proportional to 6 and therefore small, it is the effect of the 
huge velocity gradients that makes the dissipation non-negligible. A straightforward 
calculation gives (Milner 1991) 

(1 1) Y u a l l  = OJS/L, 
where L is the linear size of the cell. 

On the free surface the velocity again has to adjust from the value given by the 
inviscid theory to the demands of the viscous theory over the distance 8. But in this case 
the no-slip condition does not apply, hence the velocity gradients do not have to be big. 
Therefore, as the volume is small, the dissipation of energy in the boundary near the 
free surface can be ignored. Contamination with surface-active molecules may alter 
this conclusion dramatically. The finite compressibility increases the dissipation of 
energy in the boundary layer. This problem has been thoroughly studied by Miles 
(1967). In the limiting case of an incompressible surface layer the surface acts as a fixed 

(12) 
wall and Milner (1991) finds 

Ysurf  = 0% 
as an estimate of magnitude. The exact value depends on the bulk modulus of the 
surface layer in a complicated way. 

A moving contact line is only possible if the no-slip condition is violated. This 
violation takes place on a microscale s that depends both on the length of the fluid 
molecules and on the surface roughness. Computing the work done by the surface 
tension as the contact angle changes and the contact line moves, Milner (1991) finds 

8w In (R/s )  k6’ sin 0, 
‘ I  = ~ ( 0 ,  - sin 0, cos 0,) 3 

where 0” is the static contact angle and R is the macroscopic length at which the surface 
is no longer flat. Milner suggests the estimates s = 10 A, R = 6, and 0, = n/2. Note 
that y1 is not very sensitive to the exact value of s. The above expression is a maximum 
value as contact-line hysteresis has not been considered. 

In $3 .3  we show how the experimentally obtained damping rates can be explained 
by considering only bulk damping ybulk and contact-line damping yl .  The contact line 
damping gives a noticeable contribution for drive frequencies up to 150 Hz, 
corresponding to aspect ratios as high as 25. The damping yu,all from the lateral walls 
turns out to be an order of magnitude smaller. The estimate ysurf of the damping from 
a contaminated surface typically exceeds the bulk damping by a factor of 4. However, 
we observe no signature of contamination in our experiment. 

To implement the damping, the term -2ya is added on the right-hand side of (7). 
In the presence of damping the previous V-shaped borders of the dominant 
subharmonic tongues become hyperbolic 

(14) 
For p = 1 the minimum value qi = 2y/w for q is obtained. The minima of the other 
narrow resonances are larger than qf. This explains why the isochronous instability is 

p = 1 & [ q 2  - (2y/OJ)2]”2. 
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not found in experiments: for lower drive amplitude the flat surface has already 
become unstable to oscillations with half the drive frequency (Meron & Procaccia 
1986; Douady 1990). Inserting q from (8) into qi = 2 y / w  gives the threshold for the 
unbounded system f ,  = 4wy/ (k  tanh kh) or 

(15) 
If the system is bounded the instability curve consists of pieces of the hyperbolic 

f, = y / (kw tanh kh). 

tongues. 
2.3. Nonlinear theory 

As we have seen the flat surface becomes unstable at a critical amplitudef, of the 
external drive. Just above f,: normal modes are excited. However, the normal-mode 
range decreases with increasing aspect ratio, approaching zero for an infinite system. 
In such an extended system with no lateral boundaries the neutral modes are plane 
waves with the magnitude of the wave vector given by the dispersion relation. Thus, 
on the instability threshold an infinity of modes are already free to be excited. These 
modes lie on the circle in k-space. Increasing the drive amplitude abovef, turns the 
neutral circle in k-space into an unstable band. If the band is narrow, as it will be close 
tof,, the effect can be described as a small variation on top of the neutral modes, i.e. 
the plane waves will be modulated by an amplitude slowly varying in space and time. 

To describe the spatial structure of the surface state the linear theory does not suffice, 
as pattern selection is a nonlinear effect. Recently, a few attempts to develop a 
nonlinear theory have been performed (Levin & Trubnikov 1986; Milner 1991). In this 
section we briefly review Milner's work and discuss its limitations. 

Assuming a surface state composed of standing waves we seek solutions of the form 
(Milner 1991) 

6 = x a j ( x ,  t)expi(kj-x-wt)+c.c., (16) 

(17) 

3 

iw #=- -  exp kz C aj(x, t) exp i(kj - x - wt)  + C.C. 

Notice that the above expressions are chosen to be solutions of the linearized equations 
if the amplitudes a3(x, t) are constants. Exploiting the three basic symmetries of the 
system: invariance under a translation in time and invariance under translation and 
rotation in space, the general form of the amplitude equations is found. It can be shown 
that only standing waves are excited. Up to third order and omitting gradient terms, 
the amplitude equations for the standing wave amplitudes A, have the form (Malomed, 
Nepomnyashchii & Tribelskii 1989) 

k I 

Here e is the forcing e = cf-f,)/f,, and O,, is the angle spanned by k, and k,. The 
coupling function r(8) obeys the symmetries r ( O )  = r(7c-6)) and r(O) = r(-@), 
and combinatorical arguments enforce the discontinuity r(0) = r(@ +- 0)/2 (Malomed 
et af .  1989; Muller 1993; Cross & Hohenberg 1993). 

The above equation is derivable from the Luapunov functional 

F = -:YE C A: + fC I'(OjI) Af A;.  (19) 
1 j 1  

Under the assumption of a regular pattern with amplitudes A, = A consisting of N 
wave vectors equidistantly distributed on the half-circle, F attains its minimum 
- ( y ~ ) ~ N / ( 4 c : ,  r(@,,)) for A 2  = ye/CLI r (OII ) .  The most stable pattern is obtained 
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FIGURE 2. The function r(0) (in units of 1>k4) obtained by Milner (1991) (solid curve). The three other 
functions are fourth-order polynomials heuristically constructed to fulfil the stability criteria for rolls 
(thick dashed curve), squares (thin dashed curve), and an octagonal quasi-crystal (dotted curve), 
respectively. The dot ( a )  and the star (*) at 0 = 0 ,  K indicate the two values f (0 -+0) /2  and 
2 ~ k ~ + r ( @ + 0 ) / 2  (Milner 1991) used for f ( 0 )  (= T(K)). 

by minimizing r ( N )  = (1 / N )  cLl f ( O j l )  with respect to N .  Thus, either rolls ( N  = I), 
squares ( N  = 2), hexagons ( N  = 3), or octagonal quasi-crystals ( N  = 4) are favoured 
depending on the relative values of r(1) = f(O), r(2) = [f(O)+f(n/2)]/2, F(3) = 
[r(O) + 2r(n/3)]/3, and r(4) = [f(O) + 2r(n/4) + f(n/2)]/4. For example, the oc- 
tagonal quasi-crystalline pattern is more stable than the square pattern when r(4) < 
r(2), i.e. when f(n/4) -= [f(O) + f(n/2)]/2. In general, the more flat r(0) is around n/2 
(assuming r(n/2) < r(O)), the higher the values of N that are favoured. As illustrative 
examples we show in figure 2 three different coupling functions f(0). heuristically 
constructed to support rolls, squares, and octagonal quasi-crystalline patterns, 
respectively. Each of the patterns is stable in a finite region of phase-space. See 
Malomed et al. (1989) for more details on the conditions for stability for both regular 
and non-regular stationary states. 

To find the specific form of the coupling function f(0), Milner applies the method 
of multiple scales (Newel1 & Whitehead 1969). The result is shown in figure 2. We find 
r(1) = 4.00vk4. r(2) = -0.04vk4, r(3) = 8.76vk4, and r(4) = 4.03rk4. The small 
negative value of r for N = 2 indicates the presence of a slight subcriticality (Milner 
uses f(0) = 2vk4 + f(O ?r 0)/2, which increases the values of T ( N )  by (2/N)vk4, thereby 
finding the square pattern to be the most favoured). However, figure 2 is strongly 
dominated by a divergence at 0 = C O S - ' ( ~ ~ / ~  - 1) - 74.9' (and at the symmetrical value 
8 = 180" - 74.9'). The divergence originates from the omission of higher harmonics in 
the expansions ( 1  6) and (17). One may speculate that the inclusion of such terms will 
change the above results for r ( N ) .  

Much more serious are the limitations enforced by neglecting fifth-order (and maybe 
higher-order) terms in the amplitude equations (for the square pattern fifth-order terms 
must necessarily be considered). To estimate the value of c: at which fifth-order terms 
become important, we use Milner's expression for the sixth-order functional under the 
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assumption of a regular pattern of N modes (all Aj = A), and the assumption of a small 
'detuning' v = Ao(k)  (expressed as a frequency by (9)) compared to y, 

The fifth-order coupling function T is derived in Milner (1991). The optimum 
amplitude A corresponding to F being at its minimum is given by 

F =  -iyeNA2+iN2T(N) A3+(1/48y)N3T(N)'A6. (20) 

A 2  = - r (N)+[r (N)2+;€T(N)2]1 '2  
NT( N)'/4y 

For e.0, we retrieve the old result A2 = y e / N r ( N ) .  From (21) it is clear that the 
fifth-order term becomes important at e = 6, z T(N) ' /T(N) ' .  This value of e turns out 
to be extremely small. While r ( N )  z vk4, T ( N )  z o k 2 ;  thus E ,  z (vk2/w)?.  For a 
typical frequency of w / n  = 380 Hz in our ethanol-based experiment, we find ec z 
3 x which is one order of magnitude below our forcing accuracy, and two orders 
of magnitude below the width of our normal-mode range, above which we first observe 
a stable pattern. Obviously, the third-order nonlinear theory is not well-suited for low- 
viscosity experiments. 

At higher viscosities (or in general at higher damping rates), the third-order theory 
is more appropriate. The analysis above suggests studies at y / w  - 0.1. Such high- 
aspect-ratio experiments have, however, not yet been carried out. The damping must 
not be too high, however, since detuning then becomes important, moving the 
divergences closer to 0 = n/2. Such a detuning has a substantial effect on f(3) and 
r(4), which decrease rapidly with detuning. The value of r( 1) remains essentially 
unchanged, while the theoretical subcriticality for the square pattern may increase 
slightly. At a detuning of 5" we estimate the r values to be (from Milner 1991, figure 
1) r(1) - 4vk4, f(2) - -vk4, r(3) - 5.5vk4, and T(4) - 2.5vk4. At a larger detuning 
(viscosity), the value of I'(.n/2) increases rapidly, eventually leading to a substantial 
increase of r(2) and r(4). 

3.  Experiments 
3 .1 .  The experimental set-up 

In this section we describe our experimental set-up for the study of Faraday waves. A 
cylindrical cell was fastened to a 13 cm high rack firmly connected to a Bruel & Kjrer 
vibration exciter type 4809. This was driven by a programmable Stanford Research 
Systems synthesized function generator DS 345, which was controlled by a personal 
computer. The shaker itself rested on a huge stone disk (60 cm in diameter, 10 cm 
thick) supported by three rubber feet to eliminate vibrations from the surroundings. 
Figure 3 shows a schematic drawing of the set-up, which resembles that of Ciliberto & 
Gollub (1984, 1985). The aim of the rack is to allow a mirror to be placed below the 
cell. The mirror forms an angle of 45" with the horizontal plane and makes it possible 
to project light through the cell. 

The dimensions of the cell in most experiments were 8.4 cm in interior diameter and 
2 cm in height. The cell was made by attaching a thin ring of glass or Plexiglas to a 
circular glass plate. The cell was closed by a 0.2 cm thick matt glass plate, which served 
three purposes: it kept the fluid from being polluted, it minimized the evaporation, and 
it scattered the light for an image to form. In this image wave maxima appear as bright 
regions because the concave surface focus the projected light. Correspondingly, wave 
minima appear as dark regions. 

The fluid used in the experiments was ethanol or propanol alcohol. The cell was filled 
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FIGURE 3. Schematic drawing of the experimental set-up. 

to a depth of 1-1.5 cm. This depth is much larger than the wavelength of the surface 
waves for the interval of frequencies 50-500 Hz that we consider. At 400 Hz, the 
wavelength is 1.7 mm. The upper limit is given by the maximum acceleration, - log, 
of the shaker. This acceleration depends on the payload which in our experiment is 
approximately 300 g. For frequencies above 500 Hz the acceleration required for the 
first instability is larger than the maximum acceleration of the shaker. Below 50 Hz 
surface waves emitted from the boundaries are visible. These waves are generated by 
the meniscus and fall off rapidly into the cell (Douady 1990), with a penetration length 
that decreases with increasing frequency. They differ from the subharmonic Faraday 
waves by being synchronous with the drive. The contribution to dissipation from the 
moving contact line (cf. (13)) is discussed further in $3.3.  

A Bruel & Kjzr MM 0002 magnetic transducer was positioned 2-10 mm above a 
disk of high permeability fastened to either the cell or the rack. The output of this 
device is a current proportional to the instantaneous velocity of the disk. The sensitivity 
is essentially independent of the frequency up to 2000 Hz, according to specifications. 
The current was amplified with an EG & G preamplifier model 113 and digitized on 
a Data Precision 6000A wave analyser. To measure the amplitude of the surface waves 
a photo diode was placed slightly above the matt glass plate, and the signal was 
amplified with a preamplifier and sent to the Data 6000A wave analyser, where it was 
digitized. The diode is not subject to the vibrations, which suggests that a correction 
needs to be made for the relative motion. However, this was not found necessary as the 
signal was almost zero for drive amplitudes less than the critical amplitude, i.e. for the 
unperturbed surface. The Data 6000A wave analyser was connected to a personal 
computer, where the data were sent for further analysis. 
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FIGURE 4. (a) The digitized image after applying a 25 YO square window. (6) Spatial Fourier spectrum 
of the image in (b). (c )  The logarithm of the radial spectrum as function of the wavenumber k 
(arbitrary units). 

Efforts were made to keep the cell horizontal. We found the best way was to excite 
the circular waves found for drive amplitudes just above the critical. We then adjusted 
the set-up until the pattern was centred and stationary. Even with the best of efforts it 
was impossible to avoid a slow overall drift of the pattern. The amplitude of the drift 
is approximately 0.1 mm s-l. 

3.2 .  The dispersion relation 
We have measured the dispersion relation in the frequency range 50-500 Hz. For fixed 
frequency we adjust the amplitude to be in the interval slightly abovef,, where stable 
circular patterns are found. With the camera in a position where most of the cell is 
visible an image is acquired. Inhomogeneities in the illumination are removed by 
dividing point by point with a background image of the unperturbed surface. The 
resulting picture is then Fourier transformed with an FFT routine. The spectrum 
consists of a set of concentric rings representing the basic wavelength and its 
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FIGURE 5. The wavelength A (in mm) as a function of the drive frequency w / n ,  where (a) the fluid is 
ethanol and (b)  propanol alcohol. The curves are the theoretical dispersion relations with tabular 
values of the capillary lengths A* = 1.71 mm for (a) and A, = 1.68 mm for (b) .  

harmonics. The Fourier spectrum is now averaged over the angle to give the radial 
spectrum. Figures 4(a),  4(b) and 4(c) show, for w/x = 380 Hz and f = 1.03f,, the 
surface state, the spatial Fourier spectrum, and the radial spectrum, respectively. The 
radial spectrum displays a series of equidistantly separated peaks on a nearly 
frequency-independent background. We now read the wavenumber from the primary 
peak. The accuracy of this method depends on the number of wavelengths contained 
in the image, i.e. the largest errors are found for low frequencies where only a few 
wavelengths are present ( A  = 7.5 mm for the forcing frequency w/n = 50 Hz). Figures 
5(a)  and 5(b) show the resulting wavelength A as functions of drive frequency o/x for 
ethanol and propanol. The solid lines are the theoretical dispersion relation (9), with 
the tabular values 1.71 and 1.68 mm for the capillary length A, at the temperature 
T = 20 "C. The agreement with theory is excellent. The measurements have been 
repeated for higher values of the drive amplitude, where the circular pattern is unstable. 
We do not find any significant change in the wavenumber. 

From the nonlinear theory, the detuning c is estimated to be u z y(2~) ' / * .  For e = 
0.03, we find Ah/A z a / w  = 0.005 in the entire frequency range studied. This estimate 
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FIGURE 6. The decay of the surface wave amplitude after shutting OK the exciter. (a) The thin curve 
is the signal from the photo diode. The heavy curve is the envelope obtained by complex 
demodulation. (b)  The envelope in a semi-logarithmic plot. 

strongly supports the excellent agreement between experiment and linear theory. For 
more viscous fluids a difference from linear theory should become visible. 

3.3. The damping 
We have performed direct measurements of the damping rate y of the surface waves. 
Such experiments have previously been conducted only for low frequencies (Henderson 
1990, 1991), where the damping is dependent on the modal structure of the wave state. 

We excited the surface waves with a drive amplitude slightly above the criticalf,: in 
the region where the circular state is stable, as we are interested in the linear damping 
rate (e x 0.02). We then turned the shaker off, and recorded the time series measured 
with the photo diode while the wave decayed. We chose a sampling rate giving 50-200 
points per period. Figure 6(a)  shows the time series for w / n  = 88 Hz. We note that the 
series is not perfectly symmetrical, a fact we attribute to the nonlinear optical process 
in the measurement (Christiansen 1992). To remove the basic frequencies, i.e. w and its 
harmonics, we used complex demodulation of the time series (Bloomfield 1976) with 
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FIGURE 7. The damping rate I/y obtained in a cell of diameter 8.4 cm. The two dashed lines show 
the theoretical prediction including only bulk damping or damping from a moving contact line, 
respectively. The full curve shows the prediction when both are included. (a) Ethanol, with parameter 
I )  = 1.19 x lo-* cm s-l, p = 0.8 gcmF', A, = 0.171 cm, and s = cm. (b) Propanol, with para- 
meters i t  = 2.25 x lo-* cm2 s-l, p = 0.8 g CXI-~, /\* = 0.168 cm, and s = cm. 

a simple moving average filter. The result is shown with the thick curve in figure 6(a).  
The wiggles on the envelope are an artifact of the demodulation. Figure 6(b) shows the 
demodulated signal in a semi-logarithmic plot. The exponential character of the decay 
is evident over many periods of the underlying oscillation. The (absolute) slope in 
figure 6(b) is the damping rate. 

A fundamental requirement of the above procedure is that the time for the shaker 
to halt is considerably less than the damping time I/y of the waves. This seems to be 
the case for the frequencies under consideration. Several runs have been done for each 
frequency and the error was estimated to be about 5 %. The position of the diode was 
typically near the centre of the cell, where the circular pattern has maximum amplitude. 
Close to the boundary the circular pattern has no amplitude, thus limiting the 
experimental studies to the central region. There, different positions were tried and no 
discrepancy found. 

The resulting damping rates for ethanol are plotted in figure 7(a)  as function of the 
frequency w / n  for a cell of diameter L = 8.4 cm. The three curves show the theoretical 
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FIGURE 8. The critical amplitudef, as a function of the drive frequency w / n .  (a) Ethanol: the size of 
the cell and the parameters are as in figure 7(a). (b)  As (a)  but in a smaller cell of diameter 5.75 cm. 
(c) Propanol: the size of the cell and the parameters are as in figure 7 ( b ) .  
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I 
FIGURE 9. Images of capillary wave patterns (a, c) and their power spectra (b ,  d )  obtained at a forcing 
frequency w /  7r = 380 Hz, and for increasing amplitudesf above fc. The region shown is about 50 % 
of the cell. (a. h)  f =  1.03f,. (c, d )  f = 1.08fc. (e,,f) Computer-generated images obtained by adding 
four sine waves of equal amplitude. 



Dissipation and ordering iit capillurv waves 337 

FIGURE 10. Two-dimensional plot of the normal modes J(k,,,,r) sin(10) for (a)  (1,m) = (4, 47); (h )  
(1.m) = (18, 40); (c) (1.m) = (31, 35); and ( d )  (1,nt) = (45, 29). In ( e )  the average of these modes is 
displayed. 
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values for pure bulk damping, (1 0), damping from the moving contact line only, (1 3), 
and for both in combination. Damping from the lateral walls is an order of magnitude 
less than the other contributions and has not been plotted. For the viscosity u we have 
used the tabular value 0.01 19 cm2 s-', and the slip length s = cm is chosen for the 
theory to fit the data. The agreement between theory and experiment is good. For high 
frequencies the bulk damping dominates, while damping from the moving contact line 
prevails for low frequencies. A characteristic of the contact-line damping is its 
dependence on the size of the cell. We repeated the experiment in a cell of diameter 
L = 5.5 cm. In comparison with the larger cell the damping rate has increased, but 
again the theory fits the experiment with the same value of s as before. 

The same experiment was performed with propanol alcohol. As the viscosity v = 
0.0225 cm2 s-' is nearly twice the value for ethanol, higher damping rates are found. 
The results are shown in figure 7(b ) .  To fit the experimental data a somewhat larger 
value of the slip length, s = cm, was chosen for the theory to match the data. We 
emphasize that the data have been fitted by theory assuming only bulk damping and 
damping from the moving contact line. While damping from the lateral boundaries is 
much less than the bulk damping, contamination of the surface could easily increase 
the damping by a factor of four. We attribute the fact that this is not observed, to the 
closed cell that hinders pollution. 

From the results of 52 we can estimate the magnitude of the nonlinear damping. 
While the system is forced, the nonlinear damping ynl  balances the linear coefficient 
in (IS), i.e. ynr = v. Thus, the maximal ratio y n l / y  when the forcing is removed is . .. 
8 x 0.02. 

3.4. The critical amplitude 
As for the damping rate, no systematic experimental study of the critical amplitudef, 
has previously been undertaken in the region of high frequencies. Although some 
sporadic data exist, the discussion by Milner (1991) makes it clear that the critical 
threshold of Faraday waves for high frequencies is still an open problem. 

To find the critical amplitude we start at an amplitude well below criticality. We then 
successively increase the amplitude by a small amount Sf - O.Olf, until the instability 
is observed. Between each step we wait three minutes to allow transients to decay. The 
instability is detected either by monitoring the surface with the camera or with a more 
sensitive photo diode placed above the centre of the cell. We find the same results for 
both procedures in agreement with the rapid growth of the amplitude just above the 
threshold. 

In these experiments the magnetic transducer was first placed near the centre of the 
cell. To test that the cell vibrates as a rigid body the transducer was moved to a position 
near the walls and the experiment repeated. For frequencies up to 450 Hz no difference 
in the critical amplitude was observed. For higher frequencies the critical amplitude 
was found to be slightly lower (- 10 %) than before. This indicates that for the highest 
frequencies a small inhomogeneity is present in the vibration. 

Figure 8(a)  shows the values off, obtained for ethanol in the large cell. The solid 
lines are the theoretical estimates assuming only bulk damping, damping from a 
moving contact line alone (s = cm as before), and both together. Again the 
contribution from the fixed walls is an order of magnitude lower and is not shown. The 
agreement is good for the entire frequency range. Figure S(b) shows the critical 
amplitude for the cell of diameter 5.75 cm. Here fitting has been done with the same 
s as before. The experiment has been repeated by starting above the threshold and 
decreasing the amplitude stepwise. No hysteresis was found. Figure S(c) shows the 
results for propanol alcohol and again the theory fits the data. 
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4. The patterns 
We have previously reported the sequence of crystalline patterns observed for 

increasing amplitudes (Christiansen et al. 1992). Here we will focus on the normal 
modes and the transition to the quasi-crystalline state. However, for completeness we 
close this section with a short review of patterns observed. 

Whenfis just above the primary instabilityf, a pattern is formed which is disordered 
in a small portion around the centre of the cell and takes the form of modulated radial 
waves in the rest (figure 9a) .  The pattern is determined by circular boundary con- 
ditions, and can be explained as a superposition of the normal modes J(kLm r )  sin (@? 
To realize this, we recall the general form of a Bessel function J ( r )  of order 1. 
When the argument r is much larger than I, the Bessel function resembles a sine 
function with a slowly decreasing amplitude 

J ( r )  - (2/nr)'12 cos ( r  - ln/2 - n/4). 

Note that in this limit the wavelength no longer depends on the order 1. When r is much 
less than 1 the Bessel function vanishes. In the intermediate regime r - I, where J(r)  has 
its extremum, the form is more complicated and depends on 1. Figures lO(a)-lO(d) 
show four (computer-generated) normal modes with (1,m) = (4,47), (18,40), (31, 3 9 ,  
and (45,29), respectively. To imitate the experimental images wave maxima are shown 
as bright regions and wave minima as dark regions. The modes are chosen to 
approximately fulfil dJ(k,,, R)/dr = 0, for R = 4.2 cm. The superposition of the modes 
is shown in figure lO(e) and displays a disordered region for small r and a sinusoidal 
oscillation for large r .  The resemblance with figure 9(a)  is striking. The size of the 
disordered central region grows as the amplitude is increased indicating the excitation 
of an increasing number of normal modes. Contrary to the situation for lower 
frequencies it has not been possible to excite a single isolated mode; even very close to 
f ,  the pattern displays a small disordered central region. 

When the amplitude is increased to 5 YO above the threshold f, a sharp transition 
from the normal-mode range (with patterns similar to figure 9a)  to a qualitatively 
different state occurs. This surface state is shown in figure 9(c) .  The state consists of 
four standing plane waves with wave vectors separated by 45" as is seen from the 
corresponding power spectrum in figure 9 ( d ) .  The eightfold orientational order can 
also be discovered by counting the number of nearest neighbours to one of the centres. 
This pattern lacks translational symmetry while still possessing long-range order. 
Thus, it forms a quasi-crystal. For comparison figures 9(e) and 9 ( f )  show the 
computer-generated images produced by adding four sine waves of equal amplitudes cq-, exp (ikj.x), with wave vectors symmetrically arranged on the circle, kj = 
(2n/h)  (sin (fnj), cos (:nj)). Many features of the experimental picture are apparent 
in this image. We notice however that there are also clear differences, mainly due to 
nonlinear optical effects, that produce higher harmonics in the experimental picture 
(Christiansen 1992). The quasi-crystal fills approximately the central 50 YO of the 
cell. Near the cell boundaries single lines are observed. The pattern is very stable; it 
persists for hours and only occasionally a defect is generated at the boundary. The 
quasi-crystalline pattern breaks down 9 YO above f,. 

For higher values of the forcing a hexagonal and a square pattern is observed. The 
phase diagram has previously been reported (Christiansen et al. 1992). The crystalline 

We acknowledge stimulating discussions with W. S. Edwards on this point. 
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patterns are found in a wide frequency range (340-500 Hz). At the lower cutoff 
frequency 340 Hz the aspect ratio is 45. If the size of the cell is decreased the cutoff 
frequency increases, keeping the aspect ratio constant. If the depth of the fluid is 
decreased to be comparable with the wavelength we observe an increase in the cutoff 
frequency. 

In order to study boundary effects, experiments were carried out using containers 
with square and irregularly shaped boundaries. The previously described sequence of 
patterns above the normal-range was still observed, including the quasi-crystalline 
pattern. The shape of the boundary seems not to influence the pattern selection. 
However, from our discussion on the nonlinear theory we note that the pattern 
selection may be strongly influenced by changes in the damping rate. One may 
speculate whether the patterns selected are determined by a changing damping rate 
over several capillary lengths near the boundary. 

5. Conclusions 
We have measured the dispersion relation, the damping rates, and the critical 

thresholds for a wide range of frequencies. The experiments agree with the predictions 
of the linear theory if damping from the moving contact line is included in addition to 
the bulk damping. The value of the only free parameters is found to be a factor 10-100 
less than the value suggested by Milner (1991). The microscale s depends on the 
molecular structure of the fluid and the roughness of the surface of the cell. No 
systematic study of s has been undertaken. 

The seemingly disordered state observed in a cylindrical cell immediately above the 
primary instability has been shown to originate from a superposition of Bessel modes. 
Far from the centre of the cell wavelengths are independent of the order of the Bessel 
modes and the boundary condition forces the individual modes to be in phase. The 
resulting pattern is a set of concentric circles. Near the centre of the cell, where the 
behaviour of the modes depends strongly on their order, the superposition gives the 
impression of a disordered pattern. 

The first state observed above the normal-mode range is the octagonal quasi- 
crystalline pattern. This pattern is also observed in irregularly shaped containers. 
Whether this pattern is the most stable in the infinite plane at a suitable damping rate 
remains to be theoretically shown. So far there exists no theory that predicts which 
pattern is the most stable in the infinite plane at low viscosities or at high viscosities. 
Studies of high-aspect-ratio experiments at intermediate viscosities ( vk2 /w  z 0.1) 
would be very useful. 
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